

CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS

DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA

CRONOGRAMA DE MATERIA

CARRERA:	HORAS SEM: (3) T: (2) P: (1)
ING. MECÁNICA ELÉCTRICA	
MATERIA: MÁQUINAS TÉRMICAS I	CICLO ESCOLAR 2005 –B
CLAVE: I M 227	PROFESOR:
CARGA HORARIA TOTAL 51 Horas	TEL:
CRÉDITOS: (6)	E. MAIL:
HORARIO:	

PRE-REQUISITOS

Dinámica:

Velocidad lineal, aceleración lineal Velocidad angular, aceleración angular

• Termodinámica:

Leyes y procesos termodinámicos

Mecánica de fluidos:

Propiedades de los fluidos

Dinámica de fluidos

- Ouímica
- Precálculo

EVALUACIÓN				
CONCEPTO	VALOR PORCENTUAL	Puntos		
1. Exámenes 1 Departamental.	20 %	20		
2 Parcial.	20 % c / Exam.	40		
2. Participación en clase	10 %	10		
3. Trabajos individuales	20 %	20		
4. Temas de Investigación	10 %	10		
Total	100 %	100		

COMPETENCIAS

- Identificar la importancia de las máquinas térmicas.
- Conocer las propiedades de los combustibles y aplicación matemática en la combustión.
- Conocer y determinar las propiedades termodinámicas de la generación de vapor de agua.
- Conocer e identificar los elementos del ciclo Rankine, como son: Generadores de vapor, Turbinas de vapor, bomba y Condensadores de vapor.
- Calcular las ganancias y pérdidas térmicas del ciclo de Rankine.

METODOLOGÍA DEL CURSO

- 1. Se evaluará la participación en clase.
- 2. Los alumnos realizarán Temas de Investigación que se discutirán y evaluarán.
- 3. Se realizarán Trabajos individuales y/o colectivos que se discutirán y evaluarán.
- 4. Se aplicarán Exámenes: 1 Departamental y 2 Parcial.

	CONTENIDO				
1	Maquinas térmicas.	3.6	Titulo del vapor		
1.1	Importancia de las maquinas térmicas.	3.7	El vapor de agua saturado y la Entropía.		
1.2	Clasificación de las maquinas térmicas	3.8	Vapor recalentado.		
1.3	Ciclo de Carnot para vapor.	3.9	Diagrama de Mollier.		
1.4	Ciclo Rankine ideal.	4	Generadores de vapor.		
2	Los energéticos.	4.1	Tipos de generadores de vapor		
2.1	Clasificación de los combustibles.	4.2	Producción del generador de vapor		
2.2	Poder calorífico de los combustibles.	4.3	Potencia de un generador		
2.3	Entalpía de formación	4.4	Factor de Vaporización y Vaporización E.		
2.4	Entalpía de combustión	4.5	La eficiencia del generador de vapor		
2.5	Combustión	4.6	Balance térmico de un generador de vapor		
2.5.1	Ecuación de combustión.	5	Turbinas de vapor.		
2.5.2	Combustión de hidrocarburos y oxigeno.	5.1	Las toberas en las turbinas de vapor.		
2.5.3	Aire para la combustión.	5.2	Tipos de turbinas de vapor.		
2.6	Relación aire- combustible.	5.3	Alabes y escalonamientos.		
2.7	Análisis de los Productos de la combustión.	5.4	Regulación de las turbinas		
3	Propiedades del vapor de agua.	6	Condensadores de agua.		
3.1	El vapor de agua saturado	7	Ciclo Rankine real - ideal.		
3.2	Diagrama T-v	7.1	Ciclo Rankine con recalentamiento.		
3.3	Diagrama P-v	7.2	Ciclo Rankine con regeneración.		
3.4	El vapor de agua saturado y la Entalpía.	7.3	Cogeneración.		
3.5	El volumen especifico del vapor de agua	7.4	Ciclos de vapor binarios.		
		7.5	Ciclos de potencia combinados		

BIBLIOGRAFIA					
REF.	TITULO	AUTOR	EDITORIAL		
1	Maquinas térmicas	Arreola Rosello.	Limusa		
2	Energía mediante vapor aire o gas	W: H: Severns. H. E. Degler.	Reverte		
3	Termodinámica II	Yunus A. Cengel. Michael A. Boles.	Mc Graw Hill		
4	Termodinámica I	Yunus A. Cengel. Michael A. Boles.	Mc Graw Hill		
5	Termodinámica (6ta edición)	Fires /Simmang	UTEHA		
6	Termodinámica (5ta edición)	Wark	Mc. Graw Hill		
7	Ingeniería termodinámica Fundamentos y aplicaciones	Francis F. Huang	CECSA		

	PROGRAMACIÓN DE CLASES					
SESIONES		TEMA	SEMANA	REFERENCIA BIBLIOGRAFICA		
1/2		Presentación del plan de la materia.	1			
1/2	1	Maquinas térmicas.	1	1	Pag12	
1/2	1.1	Importancia de las maquinas térmicas.	1	1	Pag13	
1/2	1.2	Clasificación de las maquinas térmicas	1	1	Pag18	
1/2	1.3	Ciclo de Carnot para vapor.	1	3	Pag522	
1/2	1.4	Ciclo Rankine ideal.	1	3	Pag523	
1/2	2	Los energéticos.	2	1	Pag20	
1/2	2.1	Clasificación de los combustibles.	2	2	Pag89	
1/2	2.2	Poder calorífico de los combustibles.	2	2	Pag108	
3		Problemas.	2,3	2	Pag	
1/2	2.3	Entalpía de formación	3	3	Pag742	

PROGRAMACIÓN DE CLASES					
SESIONES		TEMA	SEMANA	REFER	RENCIA
				BIBLIOGRAFICA	
1/2	2.4	Entalpía de combustión	3	3	Pag744
1/2	2.5	Combustión	3	2	Pag112
1/2	2.5.1	Ecuación de combustión.	4	2	Pag113
1/2	2.5.2	Combustión de hidrocarburos y oxigeno.	4	2	Pag114
1/2	2.5.3	Aire para la combustión.	4	2	Pag117
2		Problemas.	4	2	Pag
1/2	2.6	Relación aire- combustible.	5	2	Pag116
1/2	2.7	Análisis de los Productos de la combustión.	5	2	Pag118
3		Problemas.	5,6	2	Pag
1		Problemas	6	2	Pag
1		Examen.	7	2	
1/2	3	Propiedades del vapor de agua.	7	4	Pag12
1/2	3.1	El vapor de agua saturado	7	4	Pag39
1/2	3.2	Diagrama T-v	7	4	Pag44
1/2	3.3	Diagrama P-v	7	4	Pag45
1	3.4	El vapor de agua saturado y la Entalpía.	8	2	Pag72
2		Problemas.	8	2,4	Pag
1/2	3.5	El volumen especifico del vapor de agua	9	2	Pag74
1/2	3.6	Titulo del vapor	9	2	Pag77
2		Problemas.	9	2	Pag
1/2	3.7	El vapor de agua saturado y la Entropía.	10	2	Pag78
1/2	3.8	Vapor recalentado.	10	2	Pag75
2	3.9	Diagrama de Mollier.	10	2	Pag81
2		Problemas.	11	2	Pag
1		Examen.	11	2	Pag
1/2	4	Generadores de vapor.	12	2	Pag126
1/2	4.1	Tipos de generadores de vapor	12	2	Pag127
1/2	4.2	Producción del generador de vapor	12	2	Pag142
1/2	4.3	Potencia de un generador	12	2	Pag142
1/2	4.4	Factor de Vaporización y Vaporización E.	12	2	Pag143
1/2	4.5	La eficiencia del generador de vapor	12	2	Pag144
3.5	4.6	Balance térmico de un generador de vapor	13	2	Pag146
3		Problemas	14		
1/2	5	Turbinas de vapor.	15	2	Pag263
1/2	5.1	Las toberas en las turbinas de vapor.	15	2	Pag264
1/2	5.2	Tipos de turbinas de vapor.	15	2	Pag269
1/2	5.3	Alabes y escalonamientos.	15	2	Pag2272
1	6	Condensadores de agua.	15	2	Pag307
1/2	7	Ciclo Rankine real - ideal.	16	3	Pag527
1/2	7.1	Ciclo Rankine con recalentamiento.	16	3	Pag534
1/2	7.2	Ciclo Rankine con regeneración.	16	3	Pag537
1/2	7.3	Cogeneración.	16	3	Pag548
1/2	7.4	Ciclos de vapor binarios.	16	3	Pag552
1/2	7.5	Ciclos de potencia combinados	16	3	Pag555
3		Examen Departamental	17	2	

APLICACIÓN EXAMEN DEPARTAMENTAL MARTES 29 DE NOVIEMBRE DE 2005 TURNO MATUTINO 12 HR TURNO VESPERTINO 19 HR